Skip to content Skip to navigation

Mini-Centre of Doctoral Training in Industrial and Commercial Property Insurance


This newly established centre – jointly funded by WTW Research Network and Loughborough University – is offering full fee PhD scholarships for research on the adoption of digital technologies in Industrial and Commercial Property Insurance. It builds on the earlier co-operation between WTW Research Network and Loughborough University in the now completed TECHNGI research project on technologies and next generation insurance.

The centre will run from July 2022 until Sept 2026, with a total of six students joining in two cohorts: the first three commencing their studies in 2022 and the remaining three in 2023. The research will be conducted in close co-operation with the WTW Research Network and their parent, the global insurance broker WTW, with each student having an industrial supervisor or advisor as well as academic supervisors, access to relevant data through WTW and engagement with practitioners throughout their studies.

The research topics together form a cross-disciplinary program of research examining foundational questions about the application of digital technologies in industrial and commercial property insurance. We envisage this initial research as the incubation of a broader industry effort to adopt digital tools in insurance risk assessment and operations (e.g. on agreed benchmarks for consistency, independently contributed open-source code,  the development of software tools). The young researchers who graduate from this program will be ideally placed for playing leading roles in the digital transformation of industrial and commercial property over the years ahead.

The centre itself will allow students to pursue their individual research topics under the umbrella of a broader academic- industry student community, all addressing the challenges of digital transformation in property insurance. This community will bring the research students and their supervisors together, typically virtually but also in face-to-face meetings, with a range of other researchers and practitioners engaged in related work. The PhD scholarships also include funding for relevant field work costs, scholarly engagement through conferences and external training. The three students in the first cohort will be registered in Civil Engineering, Computer Science and in Business and Economics and offered cross school supervision so they are exposed to different disciplinary perspectives.

Deadlines and interviews for the first three PhDs will follow as below.

  1. Advertise by Thurs 14th April
  2. Deadline Monday 23rd May (5.5 weeks)
  3. Shortlist by Friday 27th May and invite to interviews.
  4. Interviews will take place on June 8th at the London headquarters of WTW, 51 Lime Street, London EC3M 7DQ. Shortlisted overseas applicants will be able to join the interview virtually

PhD descriptions – the first three students in the 2022 cohort

Ontology Digital Twinning for property insurance

Built on the initial work of ‘Applying AI to building blueprints for insurance risk assessment (AURIE)’, this project aims to develop an ontology digital twinning approach to construct the domain knowledge graph for improved underwriting capability. It will 1) develop a ontological knowledge framework for tracking and managing of  risks based on the real-time and historical data; (2) explore the practicalities, including software development, for implementing this framework using the blueprint and other information for commercial and industrial properties available to WTW and WTW clients; and (3) develop arrangements for automatic query the knowledge based for underwriting. Its ultimate ambition is to transform property insurance risk analysis and underwriting from present arrangements employing extensive manual processing into an automatic and reliable process using ontology digital twins.

Apply here: https://www.lboro.ac.uk/study/postgraduate/research-degrees/phd-opportunities/ontology-digital-twinning/

AI-based Autonomous Building Environment Mapping and Fire Asset Detection for Resilient Risk Management and Insurance

The aim of this PhD project is to develop AI and computer vision technology to automatically detect fire infrastructures and assets (e.g., fire extinguishers and emergency signs) and other important objects related to fire risks, emergency evacuation and rescuing in buildings. Novel AI technology will be developed to automatically build layout maps of buildings (e.g., rooms, doors, corridors), presenting semantic data of above extracted fire-risk object information.  The developed system can also have the capability to update the mapping and identify any changes since the last survey. The object detection and building mapping will be based on the information in video images captured by cameras.

In particular, the state of art deep learning and deep neural networks will be investigated for visual detection and pattern recognition of objects and layout. Real-time location and mapping using visual landmarks and features will be developed. Models will be compared and validated using real-world building data. Transfer learning techniques will be deployed to deal with limited image samples during the AI model training process. Initial data collection and experiments will be carried out at building at Loughborough University campus. Further data collection, experiment and tests will be carried out at different building types in collaboration with the WTW Research Network. 

Apply here: https://www.lboro.ac.uk/study/postgraduate/research-degrees/phd-opportunities/ai-autonomous-building-environment-mapping/

Technology, competition and risk transfer in commercial and industrial and property insurance

Industrial and commercial property insurance, like other forms of insurance, is a market for risk transfer. This project will use market data provided by WTW and other data sources, including insights obtained from research conducted by other students in the mini-CDT, to address central questions on the efficiency and competition in this market and the potential impact of digital technologies on risk analysis and risk transfer. The research will initially examine the magnitude and determination of the risk premium, the excess of insurance premia over actuarially fair expected pay outs. This work will be pursued both from a theoretical perspective, capturing the role of information asymmetries, and empirically using WTW and other data. The research can also investigate the dependency of the risk premium on property specific risk information and market factors and the impact of technological innovation, including automation of risk data, on the setting of risk premia and on market competition. The development and execution of this program of work will be conducted in close co-operation with WTW staff and WTW clients.

Apply here: https://www.lboro.ac.uk/study/postgraduate/research-degrees/phd-opportunities/technologycompetitionandrisktransferincommercialandindustrialpropertyinsurance/

PhD topics for the remaining three students in the 2023 cohort.

Three further studentships will be offered in 2023. The topics current proposed for these three studentships are:

AI-based 2D-3D joint modelling and enrichment of as-built BIM for property insurance


Refining property hazard estimates using computer vision and machine learning


Knowledge management in industrial and commercial property insurance